Why do a systematic review?

- too much information
- reduce bias
- explore variability
- provide reliable basis for making decisions
- inform and guide future research
What’s the difference?
Systematic review v traditional review
Traditional vs systematic reviews

<table>
<thead>
<tr>
<th>Traditional</th>
<th>Systematic</th>
</tr>
</thead>
<tbody>
<tr>
<td>- No Protocol</td>
<td>- Protocol (Cochrane)</td>
</tr>
<tr>
<td>- methodology not transparent</td>
<td>- explicit/reproducible methodology</td>
</tr>
<tr>
<td>- lack rigor/different reviewers different conclusions</td>
<td>- scientific rigor to minimise risk of bias</td>
</tr>
<tr>
<td>- become out of date</td>
<td>- regularly updated (Cochrane)</td>
</tr>
</tbody>
</table>
Same or Different?

- Traditional, narrative review
- Systematic review
- Overview
- Meta-analysis

All reviews
(also called overviews)

Individual patient data meta-analyses (pooled analyses)
Why aren’t traditional narrative reviews good enough?

- Subjective, liable to bias and error
- Literature search not comprehensive
- Selective citation of literature
- Limited description of review methods
- Usually not quantitative: can’t pick up small effects
- Readers can’t judge the quality of included studies
- Hard to separate research evidence from anecdotal experiences
How are Systematic Reviews Better?

- You don’t have to be an “expert” to do one!
- More objective, less prone to bias and error
- Literature search is comprehensive, exhaustive and repeatable
- Clear description of the methods used
- Explicit criteria for choosing studies
- Includes assessment and discussion of quality of primary studies
- Can pick up small effects by pooling of data
Elements of a Systematic Review

Formulate the Review Question & Write A Protocol
State objectives of the review of RCTs and outline eligibility criteria

Search for and include primary studies
Search for trials that seem to meet eligibility criteria

Assess Study Quality
Tabulate characteristics of each trial identified and assess its methodological quality. Apply eligibility criteria, and justify any exclusions

Extract data
Assemble the most complete dataset possible

Analyze data
Analyze results of eligible RCTs, using statistical synthesis of data (meta-analysis) if appropriate and possible

Interpret Results & Write a Report
Prepare a critical summary of the review, stating aims, describing materials and methods, and reporting results
What to look for in a systematic review?

- An explicit and clearly defined question
- Comprehensive and systematic search for studies
- Explicit, reproducible strategy for screening and including studies (inclusion/exclusion criteria)
- Assessment of quality of included studies
- Explicit data extraction
- Appropriate analysis and reporting of results
- Exploration of heterogeneity, publication bias
- Discussion should consider limitations and strength of evidence
- Implications for patient care and future research
Meta-analysis For The Non-Statistician
The horizontal lines corresponding to each of the five trials shows the relative risk.

The “blob” in the middle of each line is the point estimate of the difference between the groups (the best single estimate), and the width of the line represents the 95% confidence interval of this estimate.

‘Diamond’ - This represents the pooled data from all five trials (overall relative risk), with a new, much narrower, confidence interval.

Pictorial representation (colloquially known as a “forest plot”) of the pooled data from five randomized controlled trials.